Role of reduced manganese superoxide dismutase in ischemia-reperfusion injury: a possible trigger for autophagy and mitochondrial biogenesis?
نویسندگان
چکیده
Excessive generation of superoxide and mitochondrial dysfunction has been described as being important events during ischemia-reperfusion (I/R) injury. Our laboratory has demonstrated that manganese superoxide dismutase (MnSOD), a major mitochondrial antioxidant that eliminates superoxide, is inactivated during renal transplantation and renal I/R and precedes development of renal failure. We hypothesized that MnSOD knockdown in the kidney augments renal damage during renal I/R. Using newly characterized kidney-specific MnSOD knockout (KO) mice the extent of renal damage and oxidant production after I/R was evaluated. These KO mice (without I/R) exhibited low expression and activity of MnSOD in the distal nephrons, had altered renal morphology, increased oxidant production, but surprisingly showed no alteration in renal function. After I/R the MnSOD KO mice showed similar levels of injury to the distal nephrons when compared with wild-type mice. Moreover, renal function, MnSOD activity, and tubular cell death were not significantly altered between the two genotypes after I/R. Interestingly, MnSOD KO alone increased autophagosome formation, mitochondrial biogenesis, and DNA replication/repair within the distal nephrons. These findings suggest that the chronic oxidative stress as a result of MnSOD knockdown induced multiple coordinated cell survival signals including autophagy and mitochondrial biogenesis, which protected the kidney against the acute oxidative stress following I/R.
منابع مشابه
Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction.
BACKGROUND Heat shock protein 72 (HSP72) is known to provide myocardial protection against ischemia-reperfusion injury by its chaperoning function. Target molecules of this effect are presumed to include not only structural proteins but also other self-preservation proteins. The details, however, remain unknown. Manganese superoxide dismutase (Mn-SOD) is an enzyme that preserves mitochondria, a...
متن کاملMnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia-reperfusion injury.
Manganese superoxide dismutase (MnSOD) is one of the main antioxidant enzymes that protects the heart against ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) is a short period of ischemia-reperfusion that reduces subsequent prolonged I/R injury. Although MnSOD localizes in mitochondria, the immediate subcellular distribution of MnSOD in heart after IPC and I/R has not been stu...
متن کاملManganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals.
BACKGROUND AND PURPOSE Superoxide anion radicals (O2*-) are implicated in ischemia/reperfusion injury, although a direct relationship has not been elucidated. Recently, a specific method of hydroethidine (HEt) oxidation by O2*- was developed to detect O2*- production in a variety of experimental brain injury models. To clarify the role of O2*- in the mechanism of ischemia/reperfusion, we invest...
متن کاملTourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles: Involvement of superoxide.
Although arterial limb tourniquet is one of the first-line treatments to prevent exsanguinating hemorrhage in both civilian pre-hospital and battlefield casualty care, prolonged application of a limb tourniquet can lead to serious ischemia-reperfusion injury. However, the underlying pathomechanisms of tourniquet-induced ischemia-reperfusion injury are still poorly understood. Using a murine mod...
متن کاملCombined postconditioning with ischemia and cyclosporine-A restore oxidative stress and histopathological changes in reperfusion injury of diabetic myocardium
Objective(s): Chronic diabetes impedes cardioprotection in reperfusion injury and hence protecting the diabetic heart would have important outcomes. In this study, we evaluated whether combined postconditioning with ischemia and cyclosporine-A can restore oxidative stress and histopathological changes in reperfusion injury of the diabetic myocardium. Materials and Methods: Streptozocin-induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 304 3 شماره
صفحات -
تاریخ انتشار 2013